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An algorithm is developed based on the dynamical theory of X-ray diffraction

for calculating the profiles of the diffracted beam, i.e. the diagrams of the

intensity distribution versus 2� when a crystal is fixed at an angle of its maximum

diffracted intensity. Similar to Fraunhofer (far-field) diffraction for a single-slit

case, in the proposed algorithm the diffracted beam from one atomic layer

excited by X-rays is described by the composition of (N + 1) coherent point

oscillators in the crystal. The amplitude and the initial phase of the electric field

for each oscillator can be calculated based on the dynamical theory with given

boundary conditions. This algorithm not only gives diffraction profiles but

also provides the contribution of the excitation of modes when extremely

asymmetric diffraction is involved in the diffraction process. Examples such as

extremely asymmetric two-beam surface diffraction and three-beam surface

diffraction are presented and discussed in detail.

1. Introduction

The dynamical theory has the capability to cope with the

interaction of X-rays with matter during diffraction occur-

rence in large, perfect crystalline systems. In 1997, Stetsko and

Chang introduced an algorithm using a Cartesian coordinate

system and showed that the fundamental equations of the

wavefield can be converted into an eigenvalue equation by

algebraic linearization without further assumption and

approximations for X-ray polarization (Stetsko & Chang,

1997). The algorithm developed by Stetsko & Chang (1997) is

quite general and is not limited to extremely asymmetric

diffraction geometries or back diffraction. It is also suitable for

wide-angle diffraction geometries. Based on this algorithm

and the dynamical theory of X-ray diffraction, the diagram of

intensity distribution versus the � scan (rocking curve), ’ scan

(Renninger scan) and energy scan can be calculated.

Regarding the � scan, the crystal is rotated along the y axis

(see Fig. 1a) and the angular position of the detector is

stationary at a given 2�B, where �B is the Bragg angle. This so-

called rocking curve provides structural information about the

crystal. For example, the width of a rocking curve determines

the mosaic spread of the crystal. As for the ’ scan, the crystal

is rotated along the z axis (see Fig. 1a) along a given

reciprocal-lattice vector to generate multiple-beam diffrac-

tion. In the case of the 2� scan, however, the crystal is fixed at

the incident angle �i at which the diffracted intensity (rocking

curve) is maximum and the detector is rotated around the 2�
axis (Chang, 2004).

For an N-beam diffraction, one incident beam and (N � 1)

diffracted beams are involved. For surface diffraction

geometry, however, surface specular reflection needs to be

considered. For an extremely asymmetric diffraction such

as grazing-incident and grazing-emergence diffraction, the

diagram of the intensity distribution versus the 2� scan would

be very helpful to understand and forecast experimental data.

However, the diagram of the intensity distribution versus the

2� scan was not covered by that algorithm. Additional

development is needed.

In this paper, we propose a new algorithm, based on the

dynamical theory of X-ray diffraction, to calculate the profiles

of the diffracted beams as a function of the 2� angle (2� scan).

Figure 1
(a) The Cartesian coordinate frame. n̂n is inward surface normal and t is
the thickness of the crystal. kO is the incident beam, �i is the angle
between kO and the xy plane. ’ is the angle between the x axis and the
projection of the incident beam on the xy plane. (b) The geometry of the
N-beam diffraction in reciprocal space (see the text for explanation).
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We use an extremely asymmetric two-

beam surface diffraction from an Si

substrate and a three-beam Bragg

surface diffraction from a Ge substrate

as examples to illustrate the relation

between the diffraction profiles and

individual modes of excitation. We

successfully demonstrate not only the

2� diffraction profiles but also the

connection between the diffraction

profiles and the excitation of modes for

asymmetric diffraction situations. This

algorithm can also determine whether

the diffracted beam is of single-mode or

multi-mode nature (Chen et al., 2014).

2. Theoretical considerations

Darwin and Ewald initially developed

the dynamical theory of X-ray diffrac-

tion in order to explain the primary

extinction (Darwin, 1914; Ewald, 1916).

Max von Laue introduced the dielectric

constant in crystalline materials as a

complex periodic function of space, and

the X-ray wavefunctions are interpreted

as Bloch waves (von Laue, 1931). The

dynamical theory of X-ray diffraction

has been devised not only for plane-

wave X-rays but also for spherical-wave

X-rays (Kato, 1960; Kohn et al., 2000). A

spherical wave of X-ray diffraction can

account for X-ray imaging (Kohn et al.,

2013). Here, the incident beam waves

are assumed to be plane-wave X-rays.

Then the interaction of X-rays with the

crystal can be described by the funda-

mental equation of the wavefield.

For N-beam diffraction, all N reci-

procal-lattice points are on the surface

of the Ewald sphere. The fundamental

equation of the wavefield can be written

as equation (1) (Stetsko & Chang, 1997;

Authier, 2005; Chang, 2004):

ðKm � Km � k2ÞEm

¼ ðKm � EmÞKm þ k2
PN�1

n¼0

�m�nEn; ð1Þ

where m ¼ 0; 1; 2; � � � ;N � 1. k is the

inverse of the wavelength � of the inci-

dent beam (k ¼ 1=�). �m�n is the

dielectric susceptibility of the crystal for

the (m� n) reflection. Km is the wave-

vector of the mth reflection inside the

crystal and Em is the corresponding

electric field. Information on the
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Figure 2
The calculation procedures for diffraction profiles (2� scan).



electromagnetic waves inside and outside the crystal can be

determined by the boundary conditions.

Stetsko & Chang (1997) proposed an algorithm which deals

with an N-beam diffraction situation in a single crystal. This

algorithm without assumption or approximation is highly

favourable for calculation in any kind of diffraction geometry,

including both symmetric and asymmetric cases, such as Laue

transmission, Bragg reflection, back diffraction, grazing-

incidence diffraction and grazing-emergence diffraction. In

the algorithm, the fundamental equation of the wavefield,

equation (1), is decomposed into scalar equations via a

Cartesian coordinate representation (Stetsko & Chang, 1997).

Furthermore, the fundamental equation of the wavefield can

be simplified as an eigenvalue equation in 4N � 4N matrices.

The 4N eigenvalues and eigenvectors can be determined by

solving the eigenvalue equation. An eigenvalue is denoted as

zj with j ¼ 1; � � � ; 4N, respectively. The real part of the

eigenvalue zj represents the z component of the jth tie point

on the dispersion surface. The coordinate of the jth tie point

and the centre of the Ewald sphere can be expressed as

TjðXC;YC; zjÞ and CðXC;YC;ZCÞ as shown in Fig. 1(b). The

imaginary part of the eigenvalue zj is proportional to the

linear absorption coefficient. In this Cartesian coordinate

frame (see Fig. 1a), the z axis is defined to be perpendicular to

the entrance crystal surface and outward, and both x and y

axes are parallel to the entrance crystal surface. In Fig. 1(b),

the geometry of the N-beam diffraction is shown in reciprocal

space. The wavevectors of diffracted beams inside the crystal

are drawn from the tie points on the dispersion surface to the

reciprocal-lattice points. k and K are wavevectors outside and

inside the crystal, respectively. The radius of the Ewald sphere

is nk, where n is the index of refraction. The reciprocal-lattice

points are expressed as ðXm;Ym;ZmÞ and the origin of the

reciprocal-lattice vector is O(0, 0, 0). Om is the reciprocal-

lattice vector of a given reflection m. Referring to vector

algebra, the wavevector of the diffracted beam propagating

inside the crystal can be written as

KmðjÞ ¼ ðXm � XC;Ym � YC;Zm � zjÞ ¼ ðxm; ym; zmjÞ; ð2Þ

where XC ¼ ð1=�Þ cos �i cos ’, YC ¼ ð1=�Þ cos �i sin ’ and

zmj ¼ Zm � zj. Moreover, the eigenvectors represent the

electric field ratios inside the crystal with a proportionality

constant cj. The electric field of the mth diffracted beam inside

the crystal, Em, can be written as

Em ¼

EX
m

EY
m

EZ
m

0
@

1
A ¼X4N

j¼1

EX
mðjÞ

EY
mðjÞ

EZ
mðjÞ

2
4

3
5 ¼X4N

j¼1

cj �

Ex
mðjÞ

Ey
mðjÞ

Ez
mðjÞ

2
4

3
5�  jl;

ð3Þ

 jl ¼ exp½�2i�KmðjÞ � r� is the phase term of the mth

diffracted beam at point r inside the crystal for the jth mode,

and r is a position vector. At the entrance point r ¼ ð0; 0; 0Þ,

l ¼ 1 and  j1 ¼ 1, and at the exit point r ¼ ð0; 0;�tÞ, l ¼ 2

and  j2 ¼ expð2i�zmjtÞ.

The electric field of the mth diffracted beam outside the

crystal can be written as

Eml ¼

Ex
ml

E
y
ml

Ez
ml

0
@

1
A’ml þ

Ex
ðeÞ

E
y
ðeÞ

Ez
ðeÞ

2
4

3
5�l1

m0: ð4Þ

The electric field of the incident beam is EðeÞ ¼ ½E
x
ðeÞ;E

y
ðeÞ;Ez

ðeÞ�,

�l1
m0 is the Kronecker delta. When m ¼ 0 and l ¼ 1, �l1

m0 is

1. Otherwise, �l1
m0 is 0. The electric field of the mth

diffracted beam outside the crystal is ðEx
ml;E

y
ml;Ez

mlÞ � ’ml.

The phase term of the mth diffracted beam outside the crystal

is defined as ’ml ¼ expf�2i�½xmX þ ymY þ ð�1ÞlKz
mZ�g.

Therefore, the phases at the entrance and exit surface are

’m1 ¼ 1 and ’m2 ¼ exp ð2i�Kz
mtÞ, respectively, where Kz

m =

�½k2 � ðx2
m þ y2

mÞ�
1=2. The proportional coefficient cj can be

solved from the boundary conditions described below.

The boundary conditions for the wavefield amplitude

matching at the entrance (l ¼ 1) and exit (l ¼ 2) crystal

surfaces are both tangential components of E and H, contin-

uous at the boundaries, as well as both normal components of

D and B, continuous at the boundaries. Besides, for non-

magnetic materials (B ¼ �H ¼ H), the relationships among

E, B, D and H are Dm ¼ "0ðEm þ
PN�1

n¼0 �m�nEnÞ and

Hm ¼ ðKm � EmÞ=k. For an N-beam diffraction, the N

diffracted beams follow the boundary conditions for both

surfaces, i.e.

Ex:
P4N

j¼1

cjE
x
mðjÞ ¼ Ex

ðeÞ�
l1
mO þ Ex

m1’ml ð5Þ

Ey:
P4N

j¼1

cjE
y
mðjÞ ¼ E

y
ðeÞ�

l1
mO þ E

y
m1’ml ð6Þ

Dz:
P4N

j¼1

cj Ez
mðjÞ þ

PN�1

n¼0

�m�nEz
nðjÞ

� �
¼ Ez

ðeÞ�
l1
mO þ Ez

m1’ml ð7Þ

Hx:
P4N

j¼1

cj½zmjE
y
mðjÞ � ymEz

mðjÞ� jl

¼ ½Kz
mE

y
ðeÞ � ymEz

ðeÞ��
l1
mO þ ½ð�1Þlkz

mE
y
m1 � ymEz

m1�’ml ð8Þ

Hy:
P4N

j¼1

cj½xmEz
mðjÞ � zmjE

x
mðjÞ� jl

¼ ½xmEz
ðeÞ � Kz

mEx
ðeÞ��

l1
mO þ ½xmEz

ml � ð�1Þlkz
mEx

m1�’ml ð9Þ

Bz:
P4N

j¼1

cj½ymEx
mðjÞ � xmEy

mðjÞ� jl

¼ ½ymEx
ðeÞ � xmE

y
ðeÞ��

l1
mO þ ðymEx

ml � xmE
y
m1Þ’ml: ð10Þ

The unknown cj can be determined by merging equations (5)–

(10) using a linear combination and eliminating electric fields

Ex
ml;E

y
ml and Ez

ml. The derived process can be found in Stetsko

& Chang (1997). The details of programming procedures for

dynamical calculation can be found in Chiu et al. (2008).

3. An algorithm for calculating the diffraction profile of
a 2h scan

The algorithm for X-ray crystal diffraction patterns (2� scan)

is similar to that for Fraunhofer diffraction. According to

Fraunhofer (far-field) diffraction for a single-slit case, the slit

could be depicted as a linear array of ðN þ 1Þ coherent iden-
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tical point oscillators. The diffraction pattern in space can be

calculated from the electrical field of each oscillator (Hecht,

2002; Saleh & Teich, 2007). In the proposed algorithm for

calculating the X-ray crystal diffraction profile, the 2� scan, the

diffracted beam from one atomic layer excited by X-rays can

also be described by the composition of ðN þ 1Þ coherent

point oscillators. The amplitude and initial phase of the elec-

tric field for each oscillator are calculated based on the

dynamical theory of X-ray diffraction with given boundary

conditions. The ðN þ 1Þ oscillators are either near the

entrance surface (l ¼ 1) or the exit surface (l ¼ 2) depending

on whether the diffraction geometry is Bragg or Laue. For a

Bragg case, the Bragg diffracted beam is reflected from the

crystal and leaves the entrance surface, while for a Laue case,

the diffracted beam transmits through the crystal and leaves

the crystal from the exit surface. The atomic layer excited by

X-rays contributes considerably to the diffracted beam. Its

depth is related to the extinction distance for the reflection

geometry and Pendellösung distance for the transmission

geometry. It can be expressed as L ¼ �ð�O�GÞ
1=2=j�Gj, where

� is wavelength, �G is the electric susceptibility of the G-beam

reflection, and �O and �G are the direction cosines of the

incident and diffracted beams with respect to the inward

surface normal n̂n (Authier, 2005; Als-Nielsen & McMorrow,

2011). The crystal thickness is t. Moreover, this algorithm can

be divided into two schemes. For the first scheme, the

diffraction pattern of the 2� scan is calculated by using the

electric fields inside the crystal for each oscillator, and the

connection between the diffraction profile and the excitation

of mode can be seen from the calculated results. Usually for

wide-angle diffraction, the correlation between the measured

intensities and modes cannot be distinguished, unless the

diffraction is extremely asymmetric. For the second scheme,

the electric fields outside the crystal are adopted, and the

calculated result shows only the diffraction pattern without

mode information. This is due to the fact that the electric fields

outside the crystal for each oscillator given by equation (4)

have a contribution from all the possibly excited modes. It is

therefore impossible to tell which electric field outside the

crystal resulted from which individual modes. In fact, both

schemes give the same diffraction profiles, intensity distribu-

tion and peak position. Fig. 2 shows the concept of the

calculation procedures for diffraction profiles (2� scan). The

main steps are:

(1) Calculation of the rocking curve based on the X-ray

dynamical theory (Stetsko & Chang, 1997; Chiu et al., 2008).

(2) Determination of the incident angle (�i) at the peak

position of the rocking curve: the diffraction profiles (2� scan)

are calculated for fixed �i. Usually �i is the exact diffraction

angle, namely the Bragg angle.

(3) Calculation of the electric field for each oscillator:

(a) With mode information: calculate the electric field of the

diffracted beam m for mode j inside the crystal for each

oscillator at a given incident angle (�i) by using equation (3) or

equation (11).

(b) Without mode information: calculate the electric field of

the mth diffracted beam outside the crystal for each oscillator

at a given incident angle (�i) by using equation (4) or equation

(16).

The calculations are based on the dynamical theory of X-ray

diffraction with given boundary conditions.

(4) Calculation of diffraction profiles (2� scan):

(a) With mode information: calculate the electric field of the

diffracted beam m for mode j at observation point p (position

of a detector), and then calculate the intensity of the electric

field at observation point p. Thus the 2� scan is calculated.

(b) Without mode information: calculate the electric field of

the mth diffracted beam at observation point p (position of a

detector), and then calculate the intensity of the electric field

at observation point p. Thus the 2� scan is calculated.

Step (3) is the key to obtaining the diffraction profiles and

showing the connection between the diffraction profiles and

the excitation of modes.

3.1. 2h scan with mode information

For the first scheme, assume that the diffracted beams

propagate from the side wall of the crystal into the air.

Suppose that a linear array of the ðN þ 1Þ coherent point

oscillators are lined up parallel to the z axis inside the crystal.

Figs. 3(a) and 3(b) show the schematic representation of

calculating the diffraction profile of the 2� scan at the entrance

crystal surface (l ¼ 1) for the Bragg diffraction case and at the

exit crystal surface (l ¼ 2) for the Laue diffraction case,

respectively. Referring to equation (3), the electric field of the

nth oscillator of the diffracted beam m for mode j inside the

crystal can be expressed as

Emj�in
ðpnÞ ¼ cj �

Ex
mðjÞ

Ey
mðjÞ

Ez
mðjÞ

2
4

3
5� exp ½�2i�ðKmj � pnÞ�; ð11Þ

where n ¼ 0; 1; � � � ;N. pn is the vector position of the nth

oscillator, expressed as pn ¼ �pnk̂k. Referring to equation (2),

Kmj [Kmj ¼ KmðjÞ] stands for the wavevector of the diffracted

beam m for mode j inside the crystal. The electric field of

mode j of the nth oscillator outside the crystal [EmjðpnÞ] can be

determined by the electric field of mode j of the nth oscillator

inside the crystal [equation (11)] and the boundary conditions

for the wavefield amplitude matching at the side wall of the

crystal (see x2). Moreover, the electric field, EmjðpÞ, at the

point of observation p, can be taken as the superposition of

the electric fields radiated from the oscillators on the side wall

of the crystal, i.e.

EmjðpÞ ¼ Emjðp0Þ � exp½iðKmj � r0Þ� þ Emjðp1Þ � exp½iðKmj � r1Þ�

þ � � � þ EmjðpnÞ � exp½iðKmj � rnÞ� þ � � �

þ EmjðpNÞ � exp½iðKmj � rNÞ�: ð12Þ

rn is the position vector from the nth oscillator to the obser-

vation point p, i.e. rn ¼ p� pn. The observation point p is

at ðxp; yp; zpÞ and the position vector is expressed as

p ¼ ðxp; yp; zpÞ � ð0; 0; 0Þ ¼ ½R cosð2�cryÞ; 0;R sinð2�cryÞ�. R is

the distance between a sample and a detector, and 2�cry is the

angular deviation from the position of the crystal surface.
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Assume that the oscillators can be taken as point sources

and are far from the observation point p. The wavefront at p

can be treated as plane-like. Therefore, it should be clear that

the phase term could be expressed as Kmj � rn ¼ jKmjjjrnj cos#,

where # is the angle between Kmj and rn. Then the wave takes

the form

EmjðpÞ ¼ Emjðp0Þ � exp½iðKmjr0Þ� þ Emjðp1Þ � exp½iðKmjr1Þ� þ � � �

þ EmjðpnÞ � exp½iðKmjrnÞ� þ � � �

þ EmjðpNÞ � exp½iðKmjrNÞ�: ð13Þ

Equation (13) is exactly the same as equation (12) because Kmj

and rn are along the same direction, i.e. Kmj � rn ¼

jKmjjjrnj cos# ¼ jKmjjjrnj ¼ Kmjrn, where # is 0� (Hecht,

2002).

Equation (13) can be rearranged in the form shown below:

EmjðpÞ ¼

exp½iðKmjr0Þ� �
�
Emjðp0Þ � 1þ Emjðp1Þ � expfi½Kmjðr1 � r0Þ�g

þ � � � þ EmjðpnÞ � expfi½Kmjðrn � r0Þ�g þ � � �

þ EmjðpNÞ � expfi½KmjðrN � r0Þ�g
�
; ð14Þ

where rn = p� pn = ðxp; yp; zpÞ � ð0; 0;�pnÞ ¼ ½R cosð2�cryÞ;
0;R sinð2�cryÞ � pn� and r0 = p� p0 = ðxp; yp; zpÞ � ð0; 0;�p0Þ

= ½R cosð2�cryÞ; 0;R sinð2�cryÞ � p0�. Thus, jrnj and jr0j are

functions of 2�cry. pn is the depth of the nth oscillator from the

entrance point. Notice that pN must be smaller than the

extinction length L (Authier, 2005; Als-Nielsen & McMorrow,

2011), and its scale is usually chosen as the same as the

extinction L. Moreover, the number of oscillators, ðN þ 1Þ,

stands for the number of calculated data points. The scale of

the quantity �p, the distance between the adjacent oscillators

�p ¼ ðpnþ1 � pnÞ ¼ pN=N, is usually chosen as the same as

the wavelength of the incident beam. As mentioned

previously, p and rn � r0 could be expressed as a function of

2�cry. By setting 	 ¼ rn � r0, the electric field at p can be

written as

Emjð2�cryÞ ¼

exp½iðKmjr0Þ� � fEmjðp0Þ � 1þ Emjðp1Þ � exp½iðKmj	1Þ�

þ � � � þ EmjðpnÞ � exp½iðKmj	nÞ� þ � � �

þ EmjðpNÞ � exp½iðKmj	NÞ�g: ð15Þ

The intensity of the diffracted beam at the observation point p

is proportional to the square of the electric field Emjð2�cryÞ at

p. Therefore, the intensity of a diffracted beam m for mode j at

p can be expressed as Imjð2�cryÞ ¼ jEmjð2�cryÞ � E
�
mjð2�cryÞj. The

integrated intensity Im for a diffracted beam m is the

sum of the intensities of all the modes involved,

i.e. Im ¼
P

�2�cry
Imð2�cryÞ ��2�cry, where Imð2�cryÞ =P4N

j¼1 Imjð2�cryÞ. Notice that the interval of each step, �2�cry,

must be smaller than the full width at half-maximum (FWHM)

of the diffracted beam in the x direction.

3.2. 2h scan without mode information

In the second scheme, the diffraction pattern is calculated

by using the electric fields outside the crystal. The mth

diffracted beams propagating into the air from the top (l ¼ 1,

for the Bragg diffraction case) and the bottom (l ¼ 2, for the

Laue diffraction case) of the crystal are shown in Figs. 4(a) and

4(b), respectively. In Fig. 4, the symbols are the same as those

used in Fig. 3. Suppose that there is a linear array of ðN þ 1Þ

coherent point oscillators outside the crystal. kO and km stand
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Figure 3
Schematic representation in the xz plane of the one-dimensional
diffraction profile (2� scan) algorithm with inner electric fields of the
mth diffracted beam of the jth mode for (a) Bragg diffraction where
ðN þ 1Þ oscillators are near the entrance surface, l ¼ 1, and (b) Laue
diffraction where ðN þ 1Þ oscillators are near the exit surface, l ¼ 2. KmðjÞ
is the wavevector of the jth mode of the mth reflection. 2�cry is the angular
deviation from the position of the crystal surface. The origin is at the
entrance point (0, 0, 0) and the exit point is at (0, 0, �t). R is the distance
between the origin and the observation point. The vector position of the
nth oscillator and the observation point are denoted as pn and p,
respectively. rn is the position vector from the nth oscillator to the
observation point p, i.e. rn ¼ p� pn. [The observation point p is at
ðxp; yp; zpÞ where xp ¼ R cosð2�cryÞ, yp ¼ 0, zp ¼ R sinð2�cryÞ.]



for the wavevector of the incident beam and the wavevector of

the mth diffracted beam outside the crystal, k ¼ jkOj ¼ jkmj.

Eml is the electric field of the mth diffracted beam outside the

crystal. This indicates that both Eml and k are indistinguishable

to excitation of modes. Referring to equation (4), the electric

field of the nth oscillator for a diffracted beam m outside the

crystal can be expressed as

EmlðpnÞ ¼

EX
ml

EY
ml

EZ
ml

0
@

1
A� ’ml; ð16Þ

where n ¼ 0; 1; � � � ;N. The phase term of the nth oscillator for

a diffracted beam m outside the crystal is defined as ’ml ¼

expf�2i�½xmX þ ymY þ ð�1ÞlKz
mZ�g = exp½2i�ð�1ÞlKz

mpn�,

where Z ¼ �pnk̂k. In accordance with the principle of super-

position, the electric field EmðpÞ of the diffracted beam m at

the point of observation p can be written as

EmlðpÞ ¼ Emlðp0Þ � exp½iðkr0Þ� þ Emlðp1Þ � exp½iðkr1Þ� þ � � �

þ EmlðpnÞ � exp½iðkrnÞ� þ � � � þ EmlðpNÞ � exp½iðkrNÞ�:

ð17Þ

Then, the electric field at p can be expressed as a function of

2�cry as

Emlð2�cryÞ ¼ exp½iðkr0Þ� � fEmlðp0Þ � 1þ Emlðp1Þ � exp½iðk	1Þ�

þ � � � þ EmlðpnÞ � exp½iðk	nÞ� þ � � �

þ EmlðpNÞ � exp½iðk	NÞ�g: ð18Þ

Hence, the integrated intensity Iml for a diffracted beam m is

expressed as

Iml ¼
P

�2�cry

Imlð2�cryÞ ��2�cry; ð19Þ

where Imlð2�cryÞ ¼ jEmlð2�cryÞ � E
�
mlð2�cryÞj.

According to both schemes, the diffraction profiles can be

calculated from the electric fields inside or outside the crystal

by using the dynamical theory of X-ray diffraction. Also both

schemes give consistent results with the experiments as can be

seen later in this paper. In addition, the first scheme could

deliver diffraction profiles with the corresponding modes of

wave propagation, and the second scheme provides the

diffraction profiles without mode information.

3.3. Coordinate transformations

In the previous section, the crystal coordinate system (see

Fig. 5c) is used in the algorithm for the X-ray crystal diffrac-

tion profile of the 2� scan. In the crystal frame, the crystal

surface parallel to the xy plane is defined as 2�cry ¼ 0. Because

the crystal is placed at the centre of a diffractometer, the

origin O of the laboratory coordinate system is located at the

centre of the diffractometer. Fig. 5(a) shows the laboratory

coordinate system and the experimental arrangement, where

the x axis (denoted as xLab) is along the incident-beam (kO)

direction, and the xLabyLab plane is in the equatorial plane. A

detector is situated at the intersection of 2� and 
 arcs,

meaning the detector can be scanned vertically and horizon-

tally. Fig. 5(b) shows two different reference frames: the
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Figure 5
(a) Relationship between the laboratory coordinate system
ðxLab

p ; yLab
p ; zLab

p Þ and the experimental setup ðx; y; zÞ. (b) The general
transformation between two arbitrary frames. (c) The crystal coordinate
system.

Figure 4
Schematic representation in the xz plane of the one-dimensional
diffraction profile of the 2�-scan algorithm with outside electric fields
of the mth diffracted beam at (a) entrance surface (l ¼ 1) for Bragg
diffraction, and (b) exit surface (l ¼ 2) for Laue diffraction. kO and km

stand for the wavevector of the incident beam and the wavevector of the
mth diffracted beam outside the crystal.



crystal coordinate system and the laboratory coordinate

system. The position vector p in Fig. 5(b) can be expressed as

p ¼ ðxp; yp; zpÞ in the crystal system, or p ¼ ðxLab
p ; yLab

p ; zLab
p Þ in

the laboratory coordinate system.

The relationship between these two coordinate systems can

be expressed as follows:

p ¼

xLab
p

yLab
p

zLab
p

0
B@

1
CA ¼ Ryð�iÞ

xp

yp

zp

0
B@

1
CA

¼

cos �i 0 � sin �i

0 1 0

sin �i 0 cos �i

0
B@

1
CA

xp

yp

zp

0
B@

1
CA: ð20Þ

Ryð�iÞ is a rotation matrix for a rotation of the system around

the y axis by �i , where �i is the incident angle. When the crystal

system is rotated about the y axis by �i , the calculated

diffracted profile of the 2�cry scan in the crystal coordinate

system can be transformed into that in the laboratory coor-

dinate system via the rotation matrix Ryð�iÞ. In Fig. 5(c), the

incident angle �i ¼ �B þ � is the angle between the crystal

surface and the incident beam. �B is the Bragg angle of the

G-reflection and � is the angle between the atomic plane of

the G-reflection and the crystal surface. � is expressed as

� ¼ �0 þ �mis. �0 ¼ cos�1ðOG� ẑz=jOGjÞ can be calculated

from the z axis and reciprocal-lattice vector OG. �mis is the

miscut between the crystal surface and the (hkl) atomic planes

of the [hkl] wafer. If �mis = 0�, for a symmetric Bragg

diffraction � is 0�, and for a symmetric Laue diffraction � is

90�.

4. Case study

In this section an extremely asymmetric two-beam surface

diffraction and a three-beam Bragg surface diffraction are

discussed. As shown later, the calculated results not only

provide the diffraction profiles of the 2� scan but also reveal

the relationship between the excited modes and the diffracted

beams. For an extremely asymmetric two-beam surface

diffraction, three beams are observed. One is the incident

beam, one is the surface diffracted beam and the other one is

the specular surface reflected beam. It shows the one-to-one

correspondence of the excited modes to the diffracted beams,

which occur at different 2�. For three-beam surface diffrac-

tion, four beams are observed. One is the incident beam, two

are diffracted beams, and the last one is the specular surface

reflected beam. It shows the diffraction profiles with the

corresponding modes of wave propagation.

Fig. 6 shows a schematic of the 2�-scan experimental setup.

The experiment was performed at the 25-pole wiggler beam-

line 17B1 at the National Synchrotron Radiation Research

Center (NSRRC), Taiwan. The incident beam defined by an

Si(111) double-crystal monochromator was �-polarized with

the beam size about 0.5 � 0.6 mm (V � H). The acceptance

angle and energy resolution are 4(H) � 0.3(V) mrad and 2 �

10�4, respectively. The distances from the beam source to the

monochromator and to the sample crystal are about 23.9 and

42 m, respectively (see http://www.nsrrc.org.tw/). The sample

crystal was placed at the centre of an eight-circle diffract-

ometer at beamline 17B1. The 2� scan is performed when the

sample crystal is at a fixed �i and a scintillation detector is

placed on the detector arm which can be rotated along 2� and


 circles, as shown in Fig. 5(a). The detector is moving during

the measurement. The diffracted beam was monitored by a

scintillation detector placed 100 cm away from the centre of

the diffractometer. In consideration of the beam divergence in

the vertical direction, all the calculated diffraction profiles

were convoluted with a Gaussian function, whose FWHM is

the same as that of the incident beam.
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Figure 6
Schematic of the 2�-scan experimental setup.

Figure 7
Schematic of extremely asymmetric two-beam (000)(113) grazing-
emergence Laue diffraction of silicon at energy 8.9 keV in (a) real space,
(b) reciprocal space and (c) the dispersion surface.



4.1. Extremely asymmetrical two-beam surface diffraction

For an extremely asymmetric two-beam surface diffraction,

the angle �s between the diffracted beam kG and the crystal

surface (Fig. 7a) is smaller than the critical angle of the total

reflection, and specular reflection occurs. This is also called

grazing emergence (Authier, 2005). It is a two-beam diffrac-

tion case, but three beams are observed. Fig. 7(a) shows the

diffraction geometry of the grazing-emergence Laue diffrac-

tion of Si(000)(113) of a [001] silicon crystal. The thickness of

this crystal is 650 mm. The Cartesian coordinate frame is

chosen such that the x, y and z axes are parallel to ½110�, ½110�,

and [001], respectively. The dashed lines represent the atomic

plane (113). kO, kG and kS
G are the incident, surface diffracted

and specularly reflected wavevectors outside the crystal,

respectively. In Fig. 7(b), the reciprocal-lattice points O and G

are on the surface of the Ewald sphere. Point C is the centre of

the Ewald sphere. KO and KG are the incident and diffracted

wavevectors inside the crystal, respectively. The length of the

reciprocal-lattice vector OG is d�113.

The Laue diffracted beam kG transmits through the crystal

and the specular reflected beam kS
G propagates into the air

from the entrance surface. In this case, the photon energy is E

= 8.9 keV (� = 1.393 Å) and the Bragg angle �B of (113) is

25.174�. The miscut between the crystal surface and the (001)

atomic planes of the [001] silicon wafer was determined by

using the specular reflection of the entrance surface and the

(004) diffraction for the two in-plane directions [110] and

½110�. The smaller miscut �mis is about 0.113� along [110]. The

angle between the atomic plane (113) and crystal surface is

� ¼ cos�1½3=ð11Þ1=2
� þ �mis = 25.3525�. The incident angle �i in

Fig. 7(b) can be calculated as �i ¼ �B þ � = 50.5265�.

Fig. 7(c) shows the intersection of the dispersion surface

(solid curves) with the plane of incidence for the extremely

asymmetric two-beam Si(000)(113) surface diffraction at E =

8.9 keV. The dashed and solid spheres centred at O and G

represent the Ewald spheres outside and inside the crystal,

respectively. The radii of dashed and solid spheres are 1=� and

n=�, respectively, where n is the refractive index of the Si

crystal at E = 8.9 keV. The dashed and solid spheres intersect

at La (Laue point) and Lo (Lorentz point), respectively. The

Lorentz point Lo is approximately located at point C in Fig.

7(b). Similar to symmetrical two-beam Laue diffraction

(Chang, 2004), the excitation of the dispersion surface

generates eight possible modes of wave propagation, including

four �-polarized modes, z2; z4; z6, z8, and four �-polarized

modes, z1; z3; z5, z7. Modes 1 and 2 can be neglected because

these two modes are far from the Laue point La. The Laue

point is located at k
rðjÞ = 0 and �� = 0 (see Fig. 8a). More-

over, the peak of the calculated rocking curve is located at
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Figure 9
Schematic representation of symmetric three-beam ðO;G;LÞ Bragg
surface diffraction geometry in (a) real space, (b) reciprocal space.

Figure 8
Dynamical calculations: (a) dispersion surface, (b) linear absorption
coefficients, (c) excitation of mode, (d) measured integrated intensity, and
calculated intensities of (e) mode 6 and (f) mode 8 for an extremely
asymmetric (113) grazing-emergence Laue diffraction of silicon at E =
8.9 keV.

Figure 10
Calculated intensity distribution of (a) G(002) and (b) L(111) for the
three-beam Ge(000)(002)(111) diffraction at E = 10 keV with a
�-polarized incident radiation.



�� ¼ 2:01700 (not shown). Hence, the incident angle for the

calculated diffraction profile (2� scan) is about 50.52706�.

Figs. 8(a), 8(b) and 8(c) are the calculated dispersion surface

[k
rðjÞ], linear absorption coefficient [�ðjÞ] and excitation

of mode [ExðjÞ] of the extremely asymmetric two-beam

Si(000)(113) surface diffraction at E = 8.9 keV versus ��
(Stetsko & Chang, 1997; Authier, 2005; Chang, 2004),

respectively. �� is the angular deviation from the incident

angle �i. Because of the �-polarized incident beam, only the

dispersion curves of modes 4, 6 and 8 are shown in Fig. 8(a). In

Fig. 8(b), according to the conservation of energy, mode 4 with

negative absorption coefficient is discarded. Hence, only

modes 6 and 8 are active and whose excitations of mode are

plotted in Fig. 8(c). As can be seen, the excitations of these

two modes behave in an opposite manner to each other, mode

6 increasing and mode 8 decreasing, and both have the same

excitation (50%) at �� ¼ 2:01700.

Figs. 8(d), 8(e) and 8(f) are the measured and calculated

diffraction profiles for Si(113) grazing-emergence Laue

diffraction in the crystal coordinate. 2�cry is the angular

deviation with respect to the position of the crystal surface, i.e.

2�cry = 0�. For the dynamical calculation, the electric fields

inside the crystal are adopted. The depth pN and the distance

between adjacent oscillators �p are chosen as 1 mm and 1 Å,

respectively. Moreover, the Pendellösung distance calculated

is L = 1.2 mm for this case.

In Fig. 8(d), the (113) Laue diffracted beam with the

intensity IG and the specularly reflected beam with the

intensity IS
G are observed. Comparison of the experimental
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Figure 11
(a) Calculated dispersion surface and (b) calculated linear absorption coefficients for the three-beam Ge(000)(002)(111) diffraction at E = 10 keV with a
�-polarized incident radiation. Calculated excitation of modes versus (c) azimuth angle (�’) and (d) incident angle (��).

Figure 12
The calculated diffraction profiles (2�cry scan): (a)–(d) modes 1, 3, 7 and 8
for (111) and (e)–(h) modes 1, 3, 7 and 8 for (002) in the three-beam
Ge(000)(002)(111) case at E = 10 keV in the crystal coordinate frame.
The electric fields inside the crystal obtained from the dynamical theory
are used.



data (Fig. 8d) with the calculated

intensities for modes 6 and 8 (Figs. 8e

and 8f) shows that IS
G and IG result from

the excitation of modes 6 and 8,

respectively. The connection between

the diffraction profiles of 2� scans and

the excited modes is evident in this case.

4.2. Three-beam Bragg surface diffrac-
tion

The three-beam Bragg surface

diffraction, Ge(000)(002)(111), was

investigated. The primary reflection

G(002) and the secondary reflection

L(111) of a three-beam ðO;G;LÞ

diffraction involves a symmetric Bragg

reflected beam (KG), a surface reflected

beam (KL) and a specular surface

reflected beam (KS
L). Fig. 9 shows the

diffraction geometry in (a) real space

and (b) reciprocal space. The Cartesian

coordinate frame is chosen such that the

x, y and z axes are parallel to ½110�, ½110�

and [001], respectively. Both the Bragg

diffracted beam KG and the surface

reflected beam KL propagate into the

air from the entrance surface, and the

specularly reflected beam KS
L transmits

through the crystal. In this case, the

photon energy is E = 10 keV (� =

1.2398 Å) and the Bragg angle �B of

(002) is 12.6534�.

Fig. 10 shows the calculated

intensity distributions of the primary G(002) reflection and

the secondary L(111) reflection for the three-beam

(000)(002)(111) diffraction of Ge and E = 10 keV with a

�-polarized incident radiation. The Lorentz point (Lo) is

located at �� ¼ 0 and �’ ¼ 0, i.e. the angular position of the

calculated rocking-curve peak. Hence, the incident angle for

the calculated diffraction profile (2� scan) is about 12.6559�.

There are 12 possible modes of propagation in this case.

Modes 1 to 4 are associated with the symmetric (002) Bragg

reflection and modes 5 to 8 are related to the (111) surface

reflection. Modes 9 to 12 can be neglected because these four

modes are very far from the Lorentz point (not shown in Fig.

11). The calculated dispersion surface and linear absorption

coefficients for modes 1 to 8 are shown in Figs. 11(a) and 12(b),

respectively. According to the conservation of energy, modes

2, 4, 5 and 6 with negative absorption coefficient are discarded.

Hence, only modes 1, 3, 7 and 8 are active.

In this case, the depth pN and the distance between adjacent

oscillators �p are chosen as 500 nm and 1 Å, respectively.

The step size of �2�cry is 1 Å. Fig. 12 shows the calculated

2�cry scan of the diffraction profile for three-beam

Ge(000)(002)(111) diffraction at E = 10 keV in the crystal
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Figure 13
The connection between the calculated diffraction profiles and the excitation of modes for three-
beam Ge(000)(002)(111) at E = 10 keV using the electric fields inside the crystal obtained from the
dynamical theory.

Figure 14
The calculated diffraction profile (2�cry scan) of (a) L beam (111) and (b)
G beam (002) for three-beam Ge(000)(002)(111) at E = 10 keV in the
crystal coordinate frame using the electric fields outside the crystal
obtained from the dynamical theory. (c) and (d) are the details of (a) and
(b), respectively.



coordinate frame using the electric field inside the crystal

obtained from the dynamical theory.

Figs. 12(a) to 12(d) provide the calculated diffraction

profiles of the surface diffracted beam (IL) and specularly

reflected beam (IS
L) for modes 1, 3, 7 and 8. For the Bragg

diffracted beam (IG), Figs. 12(e) to 12(h) are the calculated

diffraction profiles for these four active modes. The intensities

of the remaining eight modes are null. According to the

calculated results, the (002) Bragg diffracted beam with the

intensity IntG results from modes 1 and 3. The (111) surface

diffracted beam with the intensity IntL results from modes 1

and 3. The (111) specularly reflected beam with the intensity

IntS
L originates from modes 7 and 8.

Fig. 13 shows the relation between calculated diffraction

profiles and the excitation of modes for three-beam

Ge(000)(002)(111) diffraction at E = 10 keV using the electric

fields inside the crystal obtained from the dynamical theory.

Modes 1 and 3 contribute to the Bragg diffracted beam KG

and the surface reflected beam KL. Modes 7 and 8 contribute

to the specularly reflected beam KS
L. Fig. 14 shows the calcu-

lated 2�cry scan of the diffraction profile for three-beam

Ge(000)(002)(111) at E = 10 keV in the crystal coordinate

frame using the electric fields outside the crystal obtained from

the dynamical theory. Both schemes give the same diffracted

profiles.

5. Conclusion

In conclusion, we have proposed in this paper an algorithm to

calculate the X-ray crystal diffraction profile of the 2� scan

based on the dynamical theory of X-ray diffraction. A

diffraction pattern can be calculated by using the electric fields

inside or outside a crystal. Both give the 2�-scan profiles in

good agreement with the experimental observation.

Comparing the experimental and calculated results obtained

with the electric fields inside the crystal, the connection

between the diffraction profile of the 2� scan and the excita-

tion of mode can be obtained. Moreover, for extremely

asymmetric diffraction, the diffraction profile of the 2� scan

due to different modes can be separately detected at different

2� angles. The reason is that the excitation of the dispersion

surface depends on the crystal entrance surface relative to the

atomic planes participating in the diffraction. Usually for

wide-angle diffraction, it is not possible to tell which measured

intensities (2� scan) correlate with which individual modes,

unless the diffraction is extremely asymmetric. For extremely

asymmetric grazing-emergence Laue diffraction, the portion

of the excited dispersion surface is asymmetric and the most

intense excitation occurs near the region where mode 6 and

mode 8 are nearly crossed over (Fig. 8a). This means that two

diffraction peaks of modes 6 and 8 appear at different 2�
angles (Figs. 8e and 8f). For three-beam Bragg surface

diffraction, the most intense excitation occurs near the Lo

point (Fig. 11). This means that modes 1 and 3 contribute to

the Bragg diffracted beam KG and the surface reflected beam

KL, while modes 7 and 8 contribute to the specularly reflected

beam KS
L. This algorithm is not only suitable for a single

crystal but also for nano-structures on a crystal substrate

(Chen et al., 2014).

Furthermore, this algorithm using the diffracted electric

fields with proper boundary conditions should be quite

general and suitable for calculations in many diffraction

geometries, including, for example, extremely asymmetric

diffraction and back diffraction.
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